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ABSTRACT 

GPEs (gel polymer electrolytes) are seen as a potential replacement for standard liquid 

electrolytes. It has been demonstrated that dispersion of nanofiller in GPEs improves 

electrolyte properties such as reduced reactivity, reduced leakage, enhanced safety, improved 

form flexibility, and manufacturing integrity. Meanwhile, the electrochemical process is 

accelerated by using electron beam (EB) radiation. The goal of this study was to investigate 

the properties of BMIMBF4 (PVDF-HFP) GPEs (physicochemical, thermal, morphological, 

and electrochemical) after in-situ surface modification of zirconia with vinyltriethoxysilane 

(VTES) coupling agent, as well as the effect of 8 MeV energy EB irradiation the radiation 

effect on GPE conductivity was conducted by using impedance analyzer in the frequency 

range of 0.1-10 MHz. The change in chemical interaction, and morphology was analyzed by 

of Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Field 

Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy 

(TEM) respectively for before and after irradiation. The morphology analysis shows surface 

smooth until 4 wt. % loading of ZIP-VTES with the average particle size 20 nm. The chemical 

change was confirmed from the ATR-FTIR results which showed that peak intensities 

corresponding to hydrogen bonds increased and shifted with increase in electron doses, which 

clearly indicated a strong interaction between polymer gel and zirconia. The maximum 

conductivity was observed to be 5.63 × 10-1 S/cm for 10 kGy and 0.61 value of lithium-ion 

transference number obtained at 298 K for 10 kGy dose.  

Keywords: electron beam; BMIMBF4-(PVDF-HFP)-LiCO4; zirconia; surface modification; 

gel polymer electrolyte 

 

 

INTRODUCTION 

Development of gel polymer electrolytes (GPEs) is essential to overcome the issues in liquid 

electrolytes applications mainly leakage of flammable liquid electrolytes. Generally, blending, 

copolymerization, and crosslinking are used to improve the properties of polymer matrices and 

produces GPEs that perform well in battery application. However, more importantly, the use of 

appropriate inorganic fillers in GPEs has recently emerged as one of the most promising 

methods to enhance the ionic conductivity and ion transfer, which results in the GPEs 
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performing well in battery application [1]. In the 2000s, the effect of particle size of inorganic 

fillers in GPEs was extensively studied [2-41]. In the 2010s, another effective method, surface 

modification, was proposed to enhance the dispersion and affinity of inorganic fillers within 

organic compounds. To facilitate interactions at the nanofiller surface and possibly improve the 

electrochemical properties of GPEs, researchers have explored fillers that are surface-modified 

to polymer electrolytes with several interesting conclusions [42-46]. Walkowial et al. [47] and 

Kurc et al. [48-49] modified the surface of a new hybrid TiO2/SiO2 filler for GPEs. The original 

hybrid fillers were modified by grafting functional groups, such as methacryloxy or vinyl 

groups, on the surface of the fillers. The surface modification chemistry of the filler not only 

improve the electrochemical properties but also the mechanical property of the GPE. Besides 

that, electron beam (EB) irradiation technique is also becoming an advanced approach to 

optimize the physical properties of polymer materials such as dielectric, electrical, structural, 

and thermal properties [50-52].  

However, the modification depends upon the irradiation dose rate and material 

characteristics. Modified polymer electrolytes are prominent materials for a wide range of 

potential applications like polymer light-emitting diode [53-54], solid state battery, optical 

display [55], and electronic device [56-57]. Whenever EB energy interacts with polymer 

material it induces change in the molecular structural arrangement such as ionization, displacing 

atoms, carbonization, and production of free radicals; as a result, chain scission and cross 

linking leading to degradation occur. The radiation not only alters the chemical structure of the 

polymer, but it can also enhance the presence of trapped charges or creates defects in the 

polymer matrix. In other words, irradiated polymers can convert them from insulators to good 

electrical conductivity materials which is a good sign and these materials can be used in various 

electronic applications [54-68]. EB irradiation is a rapidly developing technique owing to its 

simple and pollution-free use to improve the physiochemical properties of the polymers [69-

70]. It can change the structure and thermal properties of copolymers and break the crystal into 

micro–Polar Regions that interact only through electrostatic coupling [71]. The degree of 

crystallinity of the polymer electrolytes have been reported to decrease in most of the semi 

crystalline polymers at high dose irradiation [67]. The copolymers after exposure to high 

energies can exhibit high electromechanical performance, and such materials are used in sensor 

and transducer applications [72].  

It is also important to understand the charge transport mechanism in the polymers by 

studying the electrical conductivity and dielectric relaxation upon EB irradiation [69, 73] Few 

studies have reported changes in thermal property, structural arrangement, surface morphology, 

and electrical conductivity upon EB irradiation. Joykumar Singh et al. (2004) reported the 

enhanced ionic conductivity of electron beam irradiated PEG: LiClO4 polymer electrolyte 

films, i.e. 7.27 × 10-7 S/cm for an unirradiated sample and 1.31 × 10-5 S/cm for 15 kGy 

irradiated sample [61]. These values are well comparable and consistent with the observed 

result. The literature review revealed that very little work has been reported on electron beam 

induced effect on conductivity of gel polymer. Thus, in the present investigation BMIMBF4-

PVDF(HFP)-LiCO4 gel polymer electrolytes filled in-situ surface modification zirconia using 

silane coupling agent (VTES) were prepared and were exposed to 8 MeV electron beam with 

different doses to study the effect of electron beam irradiation on ionic conductivity, lithium 

transference number, chemical structure and morphology of the gel electrolytes. 
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EXPERIMENTAL 

 

Materials and sample preparation 

Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP average Mn = 4,000,000), 1-

butyl-3- methylimidazolium tetrafluoroborate (BMIMBF4 98%), lithium perchlorate (LiClO4 

99.99%), zirconium (IV) isopropoxide (ZIP, 70%), vinyltriethoxysilane (VTES, 99 %), acid 

hydrochloric (HCl 37 %), potassium chloride (KCl 99%) and acetone were procured from 

Sigma Aldrich. In this study 90 wt. % (BMIMBF4), 10 wt. % of (PVDF-HFP) and 10 wt. % 

LiClO4 were used without any further purification. BMIMBF4-(PVDF-HFP)- LiClO4 was 

dissolved in acetone under stirring until a clear homogeneous solution was obtained. ZIP, 

VTES, HCl and H2O were then added in the above solution with the mole ratio 1:0.25:2:0.05. 

It was synthesized based on Noor et. al [74]. The mixture again stirred for 2h until a viscous 

solution of was obtained. The mixture was aging for 3 days at room temperature and drying at 

80 0C in the oven. 

 

Characterizations 

FESEM analysis was carried out to provide topographical and elemental information of the 

GPEs using Carl Zeiss Evo MA10-FESEM. The gel polymer electrolytes were sputter coated 

with gold to avoid sample charging. The accelerating voltage used was 15kV and magnification 

of 100kx. TEM was performed to produce morphological information, particles size and 

distribution in the GPEs. GPEs were prepared using a microtome in liquid nitrogen of LEICA 

ULTRACUT UCT & LEICA EMFCS. The specimen was placed on a copper grid. Then, TEM 

microscopic observation was carried out with a JEOL TEM-2100. The accelerating voltage 

used was 200kV and magnification of 30000x. ATR-FTIR was carried out to investigate the 

functional groups and chemical bonds in molecules based on standard transmission, reflection 

and ATR imaging that occur in the gel polymer electrolytes. ATR-FTIR was conducted using 

Perkin-Elmer model Spectrum 400 FT-IR/NIR with Imaging System. Measurements were 

made in the range 4000–600 cm−1 with a resolution of 4 cm−1. Conductance was measured 

using a locally designed dip cell probe consisting of two platinum wires sheathed in glass. The 

cell constant was determined with a solution of 0.01 M KCl at 25 ℃. To determine the ionic 

conductivity of the prepared GPEs, impedance spectra were measured using VersaSTAT 3 

Princeton Applied Research over a frequency range of 0.1 Hz–10 MHz with a 30 mV 

amplitude. The obtained data was analyzed using Versastudio Software. The lithium 

transference number (tLi+) was determined by DC polarization technique using VersaSTAT3 

analyzer. The DC current was monitored as a function of time on the applicant at a fixed 30 

mV DC bias voltage across the sample using lithium as both working and counter electrodes 

(Li/sample/Li). Based on the Bruce and Vincent calculation method, the actual type of charge 

carrier was determined based on following equation: 

 
where Iss is the steady state current, Io the initial current (t = 0), Ro and Rss are the interfacial 

resistance before and after polarization, that determined from AC impedance measurements 
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RESULTS AND DISCUSSION 

 

Electron Microscopies (FESEM and TEM) 

Surface morphology of the prepared BMIMBF4-(PVDF-HFP)-LiClO4 with different wt. % of 

ZIP and ZIP-VTES were show in Fig. 1.  From the FESEM micrograph, the surface of the gel 

polymer is smooth until 4 wt. % and stared to show agglomeration as increase the ZIP loading. 

The same trend was shown for the ZIP-VTES loading. However, it is clearly shown that ZIP-

VTES were less agglomerate compared to ZIP. Since 4 wt.% ZIP-VTES shown the best 

morphology, as it is smooth and well distribution of ZIP-VTES, it has been chosen to be 

different weight percent : A) 2 wt. % ZIP; B) 4 wt. % ZIP; C) 6 wt. % ZIP; D) 8 wt. % ZIP; E) 

2 wt. % ZIP-VTES;  F) 4 wt. % ZIP-VTES; G) 6 wt. % ZIP-VTES; H) 8 wt. % ZIP-VTES 

exposed with electron beam.  

Fig. 2 shows a series of SEM micrograph of ZIP-VTES systems with different doses of 

electron beam. As electron beam expose to the 4 wt. % loading of ZIP-VTES, waxy type 

particles appear on the surface, but it seems that the size of the waxy particles observed is very 

small in the case of 10 kGy dose. As increase the dose to 15 kGy, agglomeration started to 

occur and further to agglomerate at 20 kGy. These changes in the morphology confirm the 

irradiation effects the polymer backbone chain in the gel polymer electrolyte. To further study 

the distribution and sizes of the ZIP-VTES particle with and without electron beam exposure, 

micrograph of TEM in Fig. 3 was referred. The particle at 4 wt. % loading of ZIP-VTES shows 

homogeneity distribution with the size averagely 50 nm. After being exposed to electron beam 

at 10 kGy, the particle size become smaller in average 20 nm and still in good homogeneity 

distribution. This indicates the electron beam exposure not only improve the morphology of 

the GPE, but also enhance the homogeneity distribution of the ZIP-VTES particle as well as 

reduced the sizes of nanoparticle. 

 

Attenuated Total Reflectance-Fourier Transform Infra-red (ATR-FTIR) 

Fig. 4 represents the FTIR spectra of BMIMBF4-(PVDF-HFP)-LiClO4 and of BMIMBF4-

(PVDF-HFP)-LiClO4 with different weight percentage of ZIP:VTES. For the BMIMBF4-

(PVDF-HFP)-LiClO4, the C-H stretching modes can be observed at 2877, 2964, 3121 and 3161 

cm−1, the C-N stretching mode of the imidazole ring at 1573, 1466 and 1169 cm−1, while the 

asymmetric bending of C-N at 622 cm−1. Four identical vibration modes of BF4 
− can be seen 

in two regions, being one triple antisymmetric (1045, 1033, 1015 cm-1) and one single 

symmetric B-F stretching (752 cm-1). The mixed mode of CH2 rocking and CF2 asymmetric 

stretching of PVDF-HFP and the BMIMBF4 shows at 844 cm−1. As reported by Shalu et.al this 

peak is prominent because is indicates the amorphous phase for gel polymer electrolytes [76]. 
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Fig. 1 FESEM micrographs of BMIMBF4-(PVDF-HFP)-LiCO4 gel polymer electrolytes with 

different weight percent: A) 2 wt. % ZIP; B) 4 wt. % ZIP; C) 6 wt. % ZIP; D) 8 wt. % ZIP; 

E) 2 wt. % ZIP-VTES;  F) 4 wt. % ZIP-VTES; G) 6 wt. % ZIP-VTES; H) 8 wt. % ZIP-VTES 
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Fig. 2 FESEM micrographs of BMIMBF4-(PVDF-HFP)-LiCO4-4 wt. % ZIP-VTES gel 

polymer electrolytes with different doses (kGy) of electron beam 

 

 
Fig. 3 TEM micrographs of BMIMBF4-(PVDF-HFP)-LiCO4-4 wt. % ZIP-VTES gel 

polymer electrolytes before radiated and after radiated (10 kGy) 

 

The characteristic peaks of pure LiClO4 are found absent in the polymer electrolytes complexes 

which confirm good complexation of the salt with host polymers. The disappearance or shifting 

of frequency rom pure polymers shows an interaction of the polymers with salt in gel polymer 

electrolytes samples [77-78].  As introduce ZIP:VTES to the gel polymer electrolytes, new 

peak occur for the hydrogen-bonded chains in zirconia particles can be observed at the band 

around 3620 cm-1. In these gel polymer electrolytes system, the hydrogen-bonded chains were 

detected at 3621 and 3634 cm−1. This observation shows that a broad band of hydrogen-bonded 

chains was split into two bands and shifted to higher wavenumbers, indicating a strong 

interaction between the BF4
− anion and the hydroxyl group of the zirconia. This interaction is 
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due to the strong electronegativity of the F atom. Besides, as the loading percentage of 

ZIP;VTES increases, more particles provides, gives strong interaction and shift the peak to a 

higher wavenumber [76]. The CH2 rocking and CF2 asymmetric peaks spilt into two bands and 

shifted to 838 and 877 cm-1 indicating strong amorphous phase was form as the zirconia and 

VTES was introduce. The respective peak positions in these gel polymer electrolytes are 

summarized in Table 1. 

 
Fig. 4 FTIR spectra of BMIMBF4-(PVDF-HFP)-LiClO4 and of BMIMBF4-(PVDF-HFP)-

LiClO4 with different weight percentage of ZIP:VTES. 

 

Fig. 5 illustrates the FTIR spectra of unirradiated and irradiated of the BMIMBF4-(PVDF-

HFP)-LiClO4- 4 wt. % ZIP-VTES. The chemical changes due to electron beam irradiation are 

identified from the variation in FTIR peaks intensity and frequency shifts compared with that 

of the unirradiated. The lists of peak assignments are also listed in Table 1. The electron beam 

radiation at different doses is responsible for imidazolium ring scission, especially at C(2)–H 

and C(5)– H in the imidazolium ring. This scission could account for the formation of free 

radicals and imidazolium oligomers, but more important for this study is the hydroxylation of 

the imidazolium cation in the presence of trace amounts of absorbed water [65], which could 

explain the band 3600cm−1 shifted as electron beam introduce to gel polymer electrolytes. It is 

show in Fig. 5 the peak slightly shifted to low wavenumber indicating strong interaction occur 
on the hydrogen bond silanol. Also carbonyl groups are formed possibly through terminal chain 

oxidation and/or imidazolium ring scission at 1630cm−1 [79]. These changes corroborate the 

morphological changes observed in FESEM and TEM analysis. 
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Fig. 5 FTIR spectra of BMIMBF4-(PVDF-HFP)-LiClO4- 4 wt. % ZIP-VTES expose at 

different dose 

 

 

Table 1 Chemical vibration modes for BMIMBF4-(PVDF-HFP)-LiClO4 , BMIMBF4-(PVDF-

HFP)-LiClO4-ZIP:VTES (unirradiated) and irradiated BMIMBF4-(PVDF-HFP)-LiClO4- 4 wt. 

% ZIP-VTES 

 
 

Ionic conductivity 

Ionic conductivity was measured at four different loadings of ZIP and ZIP-VTES from 2 to 8 

wt.% as shown in Fig. 6a. Overall, the ionic conductivity increases steadily with increasing 

zirconia content up to 4 wt.% before the ionic conductivity dropped at 6 and 8 wt.% of ZIP and 

ZIP-VTES. The ionic conductivity of BMIMBF4-(PVDF-HFP)-LiClO4 added ZIP at 4 wt. % 

loading gives the highest conductivity value 1.03 ×10-2 S cm−1. Apart from that, the presence 

of the inorganic ceramic filler give rise to steric effect in which it contributes to the retention 

of the amorphous phase of polymer electrolytes. According to Croce et al., addition of nano-

filler influences the recrystallization kinetics of the polymer and increases local amorphicity 

[81]. Eventually, this improved ion transport which primarily take place through intra-chain 

and inter-chain hopping of ionic species in the amorphous regions [82]. Further increase in the 

filler content beyond 4 wt% resulted in the reduction of ionic conductivity. The aggregation of 

the nano-particles which is strongly interacting with the polymer chains takes place and causes 

ionic immobility as proven previously in FESEM section. It is also suggested that the addition 

of filler content increases the stiffness of polymer segment, thereby suppressing the polymer 

chain motion [83-84]. This phenomenon can be attributed to the close proximity of filler grains 

leading to a “blocking” effect imposed by the more abundant filler grains and further 

immobilizes the long polymer chains [82].  
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As introduce VTES to the gel polymer electrolytes, the same trend of conductivity are shown. 

The ionic conductivity increases up to 4 wt. % of ZIP-VTES before it dropped with the highest 

value 1.43 × 10-2 S cm−1. VTES act as surface modification to the zirconia produce in the gel 

polymer. In this case the zirconia can act both as the ‘filler’ and the source of charge carriers. 

Functionalized zirconia nano-particles, where the surface of the ZrO2 was decorated with 

VTES groups and the charge was neutralized with Li+[81-82]. The conductivity of BMIMBF4-

(PVDF-HFP)-LiClO4 added ZIP-VTES at 4 wt. % expose to different electron beam dose were 

shown in Fig. 6b. The conductivity increases up to 10 kGy of irradiation before the conductivity 

dropped as per in Table 2. The highest conductivity achieved was 5.63 × 10-1 S cm−1. It is also 

observed that with increase in electron beam dose, the conductivity was found to increase 

which could be attributed to the inter-chain polymer interaction, formation of single or multiple 

ionic radical to the large electronic energy loss along their trajectories thereby increasing the 

free charge carriers in the gel polymer electrolyte [85]. The charge carriers are easily 

transported by the hopping mechanism through the defects created by radiation energy and 

freeing the dipoles present in the polymer chain [86-87]. This can be seen in the increment of 

ionic conductivity for about 1.5 magnitude order when the 4 wt.% ZIP VTES systems 

introduced to 10 kGy electron beam (from 1.03 ×10-2 S/cm to 5.63 × 10-1 S/cm). Besides, 

irradiation dose is attributed to the degradation of the polymer chains due to the chain scissoring 

resulting in reduced molecular weight at higher dosage. The low-molecular-weight polymers 

with salts exhibit high conductivity as compared to high-molecular-weight polymers because 

of reduction in the crystallinity with increased amorphous content, as reported by Abdel Hamid 

[87]. However, as the power of irradiation increases to 15 kGy, the ionic conductivity reduced 

dramatically to 1 magnitude order of 5.55 × 10-2 S/cm and further reduced to 1.12 × 10-2 S/cm 

at 20 kGy of electron beam. This might be due to the cross-linking of ionic radicals may stop 

the orientation of ions with the applied field, which leads to reduction in the population of 

induced free radicals, hence the polarization of trapped and bound charges failed. This process 

manifests that the irradiation-induced charge gradually failed to follow the applied field 

causing a reduction in the electronic oscillations at higher energy dosage [75]. 

 

 

Fig. 6 Graph of ionic conductivity of the BMIMBF4-PVDF(HFP)-LiCO4 gel polymer 

electrolytes: a) different weight percent of ZIP and ZIP-VTES ; b) different dose radiation 

 

 

 

(b) 
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Table 2 Conductivity value of the BMIMBF4-(PVDF-HFP)-LiCO4- 4 wt. % 

ZIP-VTES expose at different dose 

Dose (kGy) Log Conductivity (S/cm) 

5 8.99 × 10-2 

10 5.63 × 10-1 

15 5.55 × 10-2 

20 1.12 × 10-2 

 

Lithium transference number 

Fig. 7 depicts the DC polarization and impedance results during the determination of lithium 

transference number (TLi+) for BMIMBF4-(PVDF-HFP)-LiCO4- 4 wt. % ZIP-VTES at 10 kGy. 

From the graph, the initial decrement of DC current was observed and this is due to the 

formation of electrochemical layer and have reached a steady state after ca. 200 s. TLi+ was 

calculated using Bruce and Vincent formula as stated n methodology section. The TLi+ obtained 

is 0.61 at room temperature. These values indicate the percentage contributions of lithium ions 

in the ionic conduction. In previous study, TLi+ for ceramic filler in gel polymer electrolyte 

without radiation is 0.46 at room temperature [88]. The increased TLi+ value is due to the 

electrolyte’s structural modifications induced via Lewis acid interactions between the ceramic 

surface states and both the anions and the polymers segments which were explained earlier 

[83]. Zirconia surface groups provide cross-linking centers for the GPE, thus lowering the GPE 

reorganization tendency and there by promoting structural modifications of the polymer chains. 

This, in turn, establishes Li+ conducting pathways at the zirconia surface. The ceramic is that 

of promoting surface conducting pathways. Lithium ions are expected to move freely along 

these ceramic surface pathways and thus, under these conditions, a consistent enhancement of 

the cation transference number is logically expected [3]. 

 

 
Fig. 7 Lithium transference number of Li/sample/Li cell for BMIMBF4-(PVDF-HFP)-

LiCO4- 4 wt. % ZIP-VTES at 10 kGy 
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CONCLUSION 

The surface morphology of the irradiated gel polymer changes as compared to unirradiated. 

FT-IR result showed the band 3600 cm−1 shifted to low wavenumber indicating strong 

interaction occur on the hydrogen bond and the gel polymer. The dose of electron beam 

irradiation has significantly enhanced ionic conductivity of the gel polymer electrolyte because 

of chain scissoring and additional pathway for ion transportation by hopping mechanism. The 

introduction of electron beam to the GPE, has improved the lithium transference number. In 

conclusion it can be stated that these gel polymer electrolytes can be gives better 

electrochemical properties in order to be a new class of materials for device applications. 
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