Influence of Alkali Treatment on Mechanical and Morphological Properties of Single Agave Angustifolia Fibre
Keywords:
Physical properties, SEM, Single fibre test, Tensile test, X-ray diffractionAbstract
The effect of alkali treatment on physical, tensile, and morphological properties of single Agave Angustifolia fibre was investigated. The fibre was extracted from Agave Angustifolia leaves using a fibre extracting machine. Alkali treatment using NaOH by reflux method for 2 hours was performed on the single fibre of Agave Angustifolia. The treated and untreated single Agave Angustifolia fibre's mechanical properties were tested using tensile tests. The alkali-treated single fibres show higher tensile strength, Young's modulus, and elongation at break than that of the untreated fibres. The crystallinity index and crystallite size increased after alkali treatment from X-ray diffraction analysis. Scanning electron and optical microscopy micrographs showed that Agave Angustifolia fibres' diameter decreased with alkali treatment. Besides, micrographs also reveal the reduction of the fibre's surface roughness with alkali treatment. Comparing the treated and untreated Agave Angustifolia fibres' mechanical properties with other well-known fibres show that this fibre has excellent potential to reinforce materials in various types of polymer matrices.References
Balaji, A.N., & Nagarajan, K.J. Characterisation of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr. Polym., (2017)174: 200–208.
Dalmis, R., Kilic, G. B., Seki, Y., Koktas, S., & Keskin, O.Y. Characterisation of a novel natural cellulosic fiber extracted from the stem of Chrysanthemum morifolium. Cellulose, (2020) 27(15): 8621–8634.
Ravindran, D., Sundara Bharathi, S.R., Padma, S.R., Indran, S., & Divya, D. Characterisation of natural cellulosic fiber extracted from Grewia damine flowering plant's stem. Int. J. Biol. Macromol., (2020) 164: 1246–1255.
Keskin, O.Y., Dalmis, R., Kilic, G.B., Seki, Y., & Koktas, S. Extraction and characterisation of cellulosic fiber from Centaurea solstitialis for composites. Cellulose, (2020) 27(17): 9963–9974.
Siva, R., Valarmathi, T.N., Palanikumar, K., & Samrot, A.V. Study on a Novel natural cellulosic fiber from Kigelia africana fruit: Characterisation and analysis. Carbohydr. Polym., (2020) 116494.7.
Sarala, R. Characterisation of a new natural cellulosic fiber extracted from Derris scandens stem. Int. J. Biol. Macromol., (2020) 165: 2303–2313.
Kumar, R., Sivaganesan, S., Senthamaraikannan, P., Saravanakumar, S.S., Khan, A., Ajith Arul Daniel, S., & Loganathan, L. Characterisation of New Cellulosic Fiber from the Bark of Acacia nilotica L. Plant. J. Nat. Fibers, (2020) 1–10.
Rosli, N.A., Ahmad, I., & Abdullah, I. Isolation and characterisation of cellulose nanocrystals from Agave angustifolia fibre. BioResources, (2013) 8(2): 1893–1908.
Rosli, N.A., Ahmad, I., Anuar, F.H., & Abdullah, I. Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly (lactic acid)-natural rubber blends. Cellulose, (2019) 26(5): 3205–3218.
Rosli, N.A., Ahmad, I., Anuar, F.H., & Abdullah, I. Application of polymethylmethacrylate-grafted cellulose as reinforcement for compatibilised polylactic acid/natural rubber blends. Carbohydr. Polym., (2019) 213: 50–58.
Binoj, J.S., Raj, R.E., Sreenivasan, V.S., & Thusnavis, G.R. Morphological, physical, mechanical, chemical and thermal characterisation of sustainable indian areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. J. Bionic Eng., (2016) 13(1): 156–165.
Mohanty, A.K., Misra, M., & Drzal, L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces, (2001) 8(5): 313–343.
Li, M., Pu, Y., Thomas, V.M., Yoo, C.G., Ozcan, S., Deng, Y., Nelson, K. and Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. B. Eng., (2020) 108254.
Mohana Krishnudu, D., Sreeramulu, D., & Reddy, P.V. Alkali treatment effect: Mechanical, thermal, morphological, and spectroscopy studies on abutilon indicum fiber-reinforced composites. J. Nat. Fibers, (2020) 17(12): 1775–1784.
Farahani, G.N., Ahmad, I., & Mosadeghzad, Z. Effect of fiber content, fiber length and alkali treatment on properties of kenaf fiber/UPR composites based on recycled PET wastes. Polym. Plast. Technol. Eng., (2012) 51(6): 634–639.
Sheltami, R.M.E., Abdullah, I., & Ahmad, I. Structural Characterisation of Cellulose and Nanocellulose Extracted from Mengkuang Leaves. Adv. Mat. Res., (2012) 545: 119–123.
Khan, M.N., Rehman, N., Sharif, A., Ahmed, E., Farooqi, Z.H., & Din, M.I. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication. Int. J. Biol. Macromol., (2020) 153: 72–78.
Segal, L., Creely, J.J., Martin, A.E., and Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. (1959) 29(10): 786–794.
Roy, A., Chakraborty, S., Kundu, S.P., Basak, R.K., Majumder, S.B., & Adhikari, B. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Biores. Technol. (2012) 107: 222–228.
El Oudiani, A., Ben Sghaier, R., Chaabouni, Y., Msahli, S., & Sakli, F. Physico-chemical and mechanical characterisation of alkali-treated Agave americana L. fiber. J. Text. Inst., (2012) 103(4): 349–355.
Li, X, Tabil, L.G., & Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ., (2007) 15: 25–33.
Li, Y., Mai, Y.W., & Ye, L. Sisal fiber and its composites: a review of recent developments. Compos. Sci. Technol., (2000) 60: 2037–2055.
Yussuf, A.A., Massoumi, I., & Hassan, A. Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J. Polym. Environ., (2010) 18: 422–429.
Pitchayya Pillai, G., Manimaran, P., & Vignesh, V. Physico-chemical and Mechanical Properties of Alkali-Treated Red Banana Peduncle Fiber. J. Nat. Fibers, (2020) 1–10.
Ganapathy, T., Sathiskumar, R., Senthamaraikannan, P., Saravanakumar, S.S., & Khan, A. Characterisation of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. Int. J. Biol. Macromol., (2019) 138: 573–581.
Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P., & Saravanakumar, S.S. Characterisation of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydr. Polym., (2019) 217: 178–189.
Reddy, N., & Yang, Y. Structure and properties of high quality natural cellulose fibers from cornstalks. Polym., (2005) 46(15): 5494–5500.
Mwaikambo, L.Y., & Ansell, M.P. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die angewandte makromolekulare Chemie, (1999) 272(1): 108–116.
Ouajai, S., & Shanks, R.A. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym. Degrad. Stab., (2005) 89(2): 327–335.
Tserki, V., Matzinos, P., Kokkou, S., & Panayiotou, C. Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterisation of waste flour. Compos. Part A Appl. Sci. Manuf., (2005) 36(9): 965–974.
Spinacé, M.A.S., Lambert, C.S., Fermoselli, K.K.G., & Paoli, M.A.D. Characterisation of lignocellulosic curaua fibres. Carbohydr. Polym., (2009) 77(1): 47–53.
Arnata, I. W., Fahma, F., Richana, N., & Sunarti, T. C. (2019). Cellulose production from sago frond with alkaline delignification and bleaching on various types of bleach agents. Orient. J. Chem., 35(Special Issue 1): 8–19.
Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., & Kottaisamy, M. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym., (2010) 81(3): 720–725.
Sahu, P., & Gupta, M. K. Mechanical, thermal and morphological properties of sisal fibres. In IOP conference series: Mater. Sci. Eng., (2018) 455(1): 012014.
Abdal-Hay, A., Suardana, N.P.G., Choi, K.S., & Lim, J.K. Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. Int. J. Precis. Eng. Manuf., (2012) 13(7): 1199–1206.
Musanif, I.S., & Thomas, A. Effect of alkali treatments of physical and mechanical properties of coir fiber. Chem. Mat. Engin., (2015) 3(2): 23–28.
Cai, M., Takagi, H., Nakagaito, A.N., Li, Y., & Waterhouse, G.I. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos. Part A: App. Sci. Manuf., (2016) 90: 589–597.
Leman, Z., Zainudin, E.S., & Ishak, M.R. Effectiveness of alkali and sodium bicarbonate treatments on sugar palm fiber: mechanical, thermal, and chemical investigations. J. Nat. Fibers. (2018) 17(6).
Prithiviraj, M., & Muralikannan, R. Investigation of Optimal Alkali-treated Perotis indica Plant Fibers on Physical, Chemical, and Morphological Properties. J. Nat. Fibers, (2020) 1–14.
Downloads
Additional Files
Published
Issue
Section
License
It is the author's responsibility to ensure that their submitted work does not infringe any existing copyright. Authors should obtain permission to reproduce or adapt copyrighted material and provide evidence of approval upon submitting the final version of a manuscript.