KESAN MASA PRARAWATAN TERMA BAGI PENGHASILAN KARBON KERAS BERASASKAN SEKAM PADI UNTUK APLIKASI BATERI ION NATRIUM

Kai Ling Chai, Afiena Nurizyan Mohd Azuan, Mohd Sukor Su’ait, Siti Aminah Mohd Noor, Tian Khoon Lee, Azizan Ahmad

Abstract


Sekam padi merupakan sisa biojisim yang memiliki potensi untuk digunakan dalam pembuatan elektrod karbon keras di dalam bateri ion natrium (SIBs). Bahan ini memiliki permukaan spesifik yang luas dan kapasiti menyimpan tenaga teori yang tinggi. Dalam kajian ini, kesan variasi masa prarawatan terma yang berbeza  dijalankan terma dijalankan ke atas sekam padi sebagai sumber karbon keras untuk aplikasi bahan anod dalam SIB. Analisis spektroskopi Raman dan CHNSO telah dilakukan untuk menentukan sifat kimia manakala struktur karbon keras dikaji dengan pembelauan sinar-X (XRD). Ukuran saiz, luas permukaan liang, purata diameter dan isi padu liang telah dilakukan melalui analisis saiz zarah dan jerapan fizikal. Keputusan menunjukkan bahawa tempoh masa prarawatan terma mempunyai kesan yang signifikan terhadap sifat karbon keras. Masa rawatan terma optimum didapati adalah 40 jam (sampel RH2) dan mempunyai luas permukaan spesifik dan komponen karbon tertinggi iaitu 1059.02 m2g−1 dan 78.0% masing-masing dengan saiz zarah berdiameter 15.0 µm. Luas permukaan ini adalah hampir empat kali ganda nilai yang diperolehi daripada kajian sebelum. Dijangkakan sampel ini dapat menghasilkan lebih tinggi kapasiti penyimpanan tenaga dan kinetik semasa operasi SIB kerana peningkatan luas permukaan dan tapak aktif.


Keywords


bateri ion natrium; sekam padi; karbon keras; rawatan asid; rawatan terma

Full Text:

PDF

References


Z. Xu, M. Sun, S. Wu, Y. Chen, L. Li, X. Zou, L. Chen, H. Yang, H. Pang, Interfacial engineering of graphene aerogel encapsulated FeSe2-Fe2O3 heterojunction nanotubes for enhanced lithium storage, Journal of Alloys and Compounds. 934 (2023) 167939. https://doi.org/https://doi.org/10.1016/j.jallcom.2022.167939.

P.Z. and Z.S. Xueqin Xu , Dawei Sha , Zhihua Tian , Fushuo Wu , Wei Zheng , Li Yang , Shengyu Xie, Lithium storage performance and mechanism of nano-sized Ti2InC MAX phase, Nanoscale Horiz. 8 (2023) 331–337.

M.A.A.M. Abdah, M. Mokhtar, L.T. Khoon, K. Sopian, N.A. Dzulkurnain, A. Ahmad, Y. Sulaiman, F. Bella, M.S. Su’ait, Synthesis and electrochemical characterizations of poly(3,4-ethylenedioxythiophene/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries, Energy Reports. 7 (2021) 8677–8687. https://doi.org/https://doi.org/10.1016/j.egyr.2021.10.110.

L.T. Khoon, M.-L.W. Fui, N.H. Hassan, M.S. Su’ait, R. Vedarajan, N. Matsumi, M. Bin Kassim, L.K. Shyuan, A. Ahmad, In situ sol–gel preparation of ZrO2 in nano-composite polymer electrolyte of PVDF-HFP/MG49 for lithium-ion polymer battery, Journal of Sol-Gel Science and Technology. 90 (2019) 665–675. https://doi.org/10.1007/s10971-019-04936-1.

T.K. Lee, N.F.M. Zaini, N.N. Mobarak, N.H. Hassan, S.A.M. Noor, S. Mamat, K.S. Loh, K.H. KuBulat, M.S. Su’ait, A. Ahmad, PEO based polymer electrolyte comprised of epoxidized natural rubber material (ENR50) for Li-Ion polymer battery application, Electrochimica Acta. 316 (2019) 283–291. https://doi.org/10.1016/J.ELECTACTA.2019.05.143.

M. Sun, Z. Xu, K. Liu, H. Yang, T. Yang, C. Jin, Z. Wang, Y. Jin, L. Chen, Construction of rice husk-derived SiOx nanoparticles encapsulated with graphene aerogel hybrid for high-performance lithium ion batteries, Electrochimica Acta. 422 (2022) 140572. https://doi.org/https://doi.org/10.1016/j.electacta.2022.140572.

P. Yu, W. Tang, F.-F. Wu, C. Zhang, H.-Y. Luo, H. Liu, Z.-G. Wang, Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review, Rare Metals. 39 (2020) 1019–1033. https://doi.org/10.1007/s12598-020-01443-z.

Y. Fang, D. Luan, X.W. (David) Lou, Recent Advances on Mixed Metal Sulfides for Advanced Sodium-Ion Batteries, Advanced Materials. 32 (2020) 2002976. https://doi.org/https://doi.org/10.1002/adma.202002976.

Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou, J. Bao, Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries, Carbon. 127 (2018) 658–666. https://doi.org/https://doi.org/10.1016/j.carbon.2017.11.054.

N.J. Azaki, A. Ahmad, N.H. Hassan, M.A.A. Mohd Abdah, M.S. Su’ait, N. Ataollahi, T.K. Lee, Poly(methyl methacrylate) Grafted Natural Rubber Binder for Anodes in Lithium-Ion Battery Applications, ACS Applied Polymer Materials. 5 (2023) 4953–4965. https://doi.org/10.1021/acsapm.3c00532.

L. Tang, B. Zhang, T. Peng, Z. He, C. Yan, J. Mao, K. Dai, X. Wu, J. Zheng, MoS2/SnS@C hollow hierarchical nanotubes as superior performance anode for sodium-ion batteries, Nano Energy. 90 (2021) 106568. https://doi.org/https://doi.org/10.1016/j.nanoen.2021.106568.

N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research Development on Sodium-Ion Batteries, Chemical Reviews. 114 (2014) 11636–11682. https://doi.org/10.1021/cr500192f.

C. Karthikeyan, G.N. Suresh Babu, S. Maruthamuthu, N. Kalaiselvi, Exploration of biogenic nitrogen doped carbon microspheres derived from resorcinol-formaldehyde as anode for lithium and sodium ion batteries, Journal of Colloid and Interface Science. 554 (2019) 9–18. https://doi.org/https://doi.org/10.1016/j.jcis.2019.06.084.

W. Li, Z. Li, C. Zhang, W. Liu, C. Han, B. Yan, S. An, X. Qiu, Hard carbon derived from rice husk as anode material for high performance potassium-ion batteries, Solid State Ionics. 351 (2020) 115319. https://doi.org/https://doi.org/10.1016/j.ssi.2020.115319.

J. Martínez De Ilarduya, L. Otaegui, M. Galcerán, L. Acebo, D. Shanmukaraj, T. Rojo, M. Armand, Towards high energy density, low cost and safe Na-ion full-cell using P2–Na0.67[Fe0.5Mn0.5]O2 and Na2C4O4 sacrificial salt, Electrochimica Acta. 321 (2019) 134693. https://doi.org/https://doi.org/10.1016/j.electacta.2019.134693.

Y. Tang, X. Wang, J. Chen, X. Wang, D. Wang, Z. Mao, PVP-assisted synthesis of g–C3N4–derived N-doped graphene with tunable interplanar spacing as high-performance lithium/sodium ions battery anodes, Carbon. 174 (2021) 98–109. https://doi.org/https://doi.org/10.1016/j.carbon.2020.12.010.

W. Chen, M. Wan, Q. Liu, X. Xiong, F. Yu, Y. Huang, Heteroatom-Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-Ion Batteries, Small Methods. 3 (2019) 1800323. https://doi.org/https://doi.org/10.1002/smtd.201800323.

R. Guo, C. Lv, W. Xu, J. Sun, Y. Zhu, X. Yang, J. Li, J. Sun, L. Zhang, D. Yang, Effect of Intrinsic Defects of Carbon Materials on the Sodium Storage Performance, Advanced Energy Materials. 10 (2020) 1903652. https://doi.org/https://doi.org/10.1002/aenm.201903652.

L. Wang, C. Wang, N. Zhang, F. Li, F. Cheng, J. Chen, High Anode Performance of in Situ Formed Cu2Sb Nanoparticles Integrated on Cu Foil via Replacement Reaction for Sodium-Ion Batteries, ACS Energy Letters. 2 (2017) 256–262. https://doi.org/10.1021/acsenergylett.6b00649.

X. Xu, Z. Dou, E. Gu, L. Si, X. Zhou, J. Bao, Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage, J. Mater. Chem. A. 5 (2017) 13411–13420. https://doi.org/10.1039/C7TA03434B.

L. Li, S. Peng, N. Bucher, H.-Y. Chen, N. Shen, A. Nagasubramanian, E. Eldho, S. Hartung, S. Ramakrishna, M. Srinivasan, Large-scale synthesis of highly uniform Fe1−xS nanostructures as a high-rate anode for sodium ion batteries, Nano Energy. 37 (2017) 81–89. https://doi.org/https://doi.org/10.1016/j.nanoen.2017.05.012.

Q. Zhao, Y. Lu, J. Chen, Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries, Advanced Energy Materials. 7 (2017) 1601792. https://doi.org/https://doi.org/10.1002/aenm.201601792.

M. Zhang, Y. Li, F. Wu, Y. Bai, C. Wu, Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode, Nano Energy. 82 (2021) 105738. https://doi.org/https://doi.org/10.1016/j.nanoen.2020.105738.

F.X.X.G.-M. Titirici, Hard carbons for sodium-ion batteries and beyond, Progress in Energy. 2 (2020) 042002. 10.1088/2516-1083/aba5f5.

B. Qua, Capacitive deionization technology and its application in circulating cooling sewage treatment: current situation and development trend, DESALINATION AND WATER TREATMENT. 201 (2020) 63–74.

T. Kesavan, T. Partheeban, M. Vivekanantha, M. Kundu, G. Maduraiveeran, M. Sasidharan, Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor, Microporous and Mesoporous Materials. 274 (2019) 236–244. https://doi.org/https://doi.org/10.1016/j.micromeso.2018.08.006.

J.R. Rugarabamu, D. Zhao, S. Li, R. Diao, K. Song, Structure modeling of activated carbons used for simulating methane adsorption – A review, Petroleum Research. 8 (2023) 103–117. https://doi.org/https://doi.org/10.1016/j.ptlrs.2022.06.004.

M. Thompson, Q. Xia, Z. Hu, X.S. Zhao, A review on biomass-derived hard carbon materials for sodium-ion batteries, Mater. Adv. 2 (2021) 5881–5905. https://doi.org/10.1039/D1MA00315A.

Y. Fujii, M. Maruyama, N.T. Cuong, S. Okada, Pentadiamond: A Hard Carbon Allotrope of a Pentagonal Network of ${mathrm{sp}}^{2}$ and ${mathrm{sp}}^{3}$ C Atoms, Phys. Rev. Lett. 125 (2020) 16001. https://doi.org/10.1103/PhysRevLett.125.016001.

T. Zhang, J. Mao, X. Liu, M. Xuan, K. Bi, X. Zhang, J. Hu, J. Fan, S. Chen, Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries, RSC Adv. 7 (2017) 41504–41511. https://doi.org/10.1039/C7RA07231G.

H. Liu, M. Jia, S. Yue, B. Cao, Q. Zhu, N. Sun, B. Xu, Creative utilization of natural nanocomposites: nitrogen-rich mesoporous carbon for a high-performance sodium ion battery, J. Mater. Chem. A. 5 (2017) 9572–9579. https://doi.org/10.1039/C7TA01891F.

N.A. Rahman, S.A. Hanifah, N.N. Mobarak, A. Ahmad, N.A. Ludin, F. Bella, M.S. Su’ait, Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells, Polymer. 230 (2021) 124092. https://doi.org/https://doi.org/10.1016/j.polymer.2021.124092.

E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels, ACS Nano. 8 (2014) 7115–7129. https://doi.org/10.1021/nn502045y.

X. Dou, I. Hasa, M. Hekmatfar, T. Diemant, R.J. Behm, D. Buchholz, S. Passerini, Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries, ChemSusChem. 10 (2017) 2668–2676. https://doi.org/https://doi.org/10.1002/cssc.201700628.

A.P. Gupte, M. Basaglia, S. Casella, L. Favaro, Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives, Renewable and Sustainable Energy Reviews. 167 (2022) 112673. https://doi.org/https://doi.org/10.1016/j.rser.2022.112673.

R. Rajan, Y. Zakaria, S. Shamsuddin, N.F. Nik Hassan, Robust synthesis of mono-dispersed spherical silica nanoparticle from rice husk for high definition latent fingermark development, Arabian Journal of Chemistry. 13 (2020) 8119–8132. https://doi.org/https://doi.org/10.1016/j.arabjc.2020.09.042.

H. Cheng, Y. Sun, X. Wang, S. Zou, G. Ye, H. Huang, D. Ye, Hierarchical porous carbon fabricated from cellulose-degrading fungus modified rice husks: Ultrahigh surface area and impressive improvement in toluene adsorption, Journal of Hazardous Materials. 392 (2020) 122298. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.122298.

T.G. Chuah, A. Jumasiah, I. Azni, S. Katayon, S.Y. Thomas Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination. 175 (2005) 305–316. https://doi.org/https://doi.org/10.1016/j.desal.2004.10.014.

S. Sekar, A.T. Aqueel Ahmed, D.Y. Kim, S. Lee, One-Pot Synthesized Biomass C-Si Nanocomposites as an Anodic Material for High-Performance Sodium-Ion Battery, Nanomaterials. 10 (2020). https://doi.org/10.3390/nano10091728.

N. Hossain, S. Nizamuddin, G. Griffin, P. Selvakannan, N.M. Mubarak, T.M.I. Mahlia, Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production, Scientific Reports. 10 (2020) 18851. https://doi.org/10.1038/s41598-020-75936-3.

X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu, D. Buchholz, D. Bresser, S. Komaba, S. Passerini, Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry, Materials Today. 23 (2019) 87–104. https://doi.org/https://doi.org/10.1016/j.mattod.2018.12.040.

G. Fey, Y.-D. Cho, C.-L. Chen, Y.-Y. Lin, P. Kumar, S.-H. Chan, Pyrolytic carbons from acid/base-treated rice husk as lithium-insertion anode materials, Pure and Applied Chemistry - PURE APPL CHEM. 82 (2010). https://doi.org/10.1351/PAC-CON-09-11-35.

M.S. Yerdauletov, K. Nazarov, B. Mukhametuly, M.A. Yeleuov, C. Daulbayev, R. Abdulkarimova, A. Yskakov, F. Napolskiy, V. Krivchenko, Characterization of Activated Carbon from Rice Husk for Enhanced Energy Storage Devices, Molecules. 28 (2023). https://doi.org/10.3390/molecules28155818.

M.S. Ismail, N. Yusof, M. Zamri, M. Yusop, A. Ismail, J. Jaafar, F. Aziz, Z. Abdul Karim, Synthesis and characterization of graphene derived from rice husks, 2019. https://doi.org/10.11113/mjfas.v15n4.1228.

F. Ahmed, G. Almutairi, P.M.Z. Hasan, S. Rehman, S. Kumar, N.M. Shaalan, A. Aljaafari, A. Alshoaibi, B. AlOtaibi, K. Khan, Fabrication of a Biomass-Derived Activated Carbon-Based Anode for High-Performance Li-Ion Batteries., Micromachines. 14 (2023). https://doi.org/10.3390/mi14010192.

T.J. Dines, D. Tither, A. Dehbi, A. Matthews, Raman spectra of hard carbon films and hard carbon films containing secondary elements, Carbon. 29 (1991) 225–231. https://doi.org/https://doi.org/10.1016/0008-6223(91)90073-R.

N. Santos, S. Mariano, M. Ueda, Carbon films deposition as protective coating of titanium alloy tube using PIII&D system, Surface and Coatings Technology. 375 (2019). https://doi.org/10.1016/j.surfcoat.2019.03.083.

C. Bommier, W. Luo, W.-Y. Gao, A. Greaney, S. Ma, X. Ji, Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements, Carbon. 76 (2014) 165–174. https://doi.org/https://doi.org/10.1016/j.carbon.2014.04.064.

S. Musso, M. Giorcelli, M. Pavese, S. Bianco, M. Rovere, A. Tagliaferro, Improving macroscopic physical and mechanical properties of thick layers of aligned multiwall carbon nanotubes by annealing treatment, Diamond and Related Materials. 17 (2008) 542–547. https://doi.org/https://doi.org/10.1016/j.diamond.2007.10.034.

Z. Ghasemi, H. Younesi, Preparation and Characterization of Nanozeolite NaA from Rice Husk at Room Temperature Without Organic Additives, Journal of Nanomaterials. 2011 (2011). https://doi.org/10.1155/2011/858961.

G. Ogwang, P.W. Olupot, H. Kasedde, E. Menya, H. Storz, Y. Kiros, Experimental evaluation of rice husk ash for applications in geopolymer mortars, Journal of Bioresources and Bioproducts. 6 (2021) 160–167. https://doi.org/https://doi.org/10.1016/j.jobab.2021.02.008.

G. Ban, S. Song, H. Lee, H.T. Kim, Effect of Acidity Levels and Feed Rate on the Porosity of Aerogel Extracted from Rice Husk under Ambient Pressure, Nanomaterials. 9 (2019) 300. https://doi.org/10.3390/nano9020300.

C. Yun, Y. Park, C. Park, Effects of Pre-carbonization on Porosity Development of Activated Carbons from Rice Straw, Carbon. 39 (2001) 559–567. https://doi.org/10.1016/S0008-6223(00)00163-9.

E. Khoshnood Motlagh, S. Sharifian, N. Asasian-Kolur, Alkaline activating agents for activation of rice husk biochar and simultaneous bio-silica extraction, Bioresource Technology Reports. 16 (2021) 100853. https://doi.org/https://doi.org/10.1016/j.biteb.2021.100853.

E. Scapin, G. Maciel, A. Polidoro, E. Lazzari, E. V Benvenutti, T. Falcade, R. Jacques, Activated Carbon from Rice Husk Biochar with High Surface Area, Biointerface Research in Applied Chemistry. 11 (2021) 10265–10277. https://doi.org/10.33263/BRIAC113.1026510277.

S.J. Gregg, K.S.W. Sing, H.W. Salzberg, Adsorption Surface Area and Porosity, Journal of The Electrochemical Society. 114 (1967) 279Ca. https://doi.org/10.1149/1.2426447.


Refbacks

  • There are currently no refbacks.


Call for Submissions

We welcome submissions for the coming issue that will be officially published in March 2022. We are committed to providing results of reviewing within two weeks, and publishing the paper within one month from the submission date (subjected to responses by authors). This means accepted papers will be available online even before the issue is published officially.

Publons Partners

Journal of Polymer Science and Technology (JPST) is now one of Publons Partners. This means biodata of reviewers in Publons will be automatically updated once reviewing on articles submitted to JPST is completed (subjected to terms and conditions).

How to promote journal articles

Promoting your journal article is imperative to maximise the exposure, enhance the discoverability and increase engagement with readers and other academics. Together with the publisher, as an author, you can help to promote your newly published articles via the following:

1) Institutional webpage.
Provide the link of your latest article in your institutional website. The webpage visitors who view your profile will be able to see your latest research and publications.

2) Social media.
The rise of the social media has also profoundly affected the publishing fraternity. More and more users have chosen the social media platforms as a way of sharing. Social media sharing helps foster convenient dissemination of information, which can be achieved within a short time. You can share your article in major online social media platforms including Twitter, Facebook, LinkedIn and so on.

3) Utilise scholarly networking and reference platforms.
A scholarly or academic networking platforms such as Academia.edu, MyNetResearch, ResearchGate, Mendeley and so on are indeed useful as they help bring scholars of common areas of expertise close together.

4) Press Releases.
If your article involves a new, significant or important discovery, consider linking up with media organisations for a press release. This brings your work to the mainstream media.

5) Blog.
If you keep a personal blog, you can get your blog readers updated with the list of your most recently published articles and the development in your area of research. Linking your article in your personal blog can vastly enhance the discoverability. Discuss briefly about the article and how the users might benefit from it.

6) Add to reading list or assignment.
Add your article (or the journal your article is published) as essential reading to your students. You may also create related assignments, e.g. review of the article, or have them discussed about the write up in class.

7) Add to your signature.
Announce your latest publication underneath your signature. Provide a link where the article can be downloaded/viewed.