Kajian terhadap potensi pengeteran poli(vinil alkohol) sebagai bahan elektrolit polimer

Authors

  • Loh MinYi
  • Mohd Sukor Su'ait [Solar Energy Research Institute, Universiti Kebangsaan Malaysia] http://orcid.org/0000-0001-9257-0657
  • Marliyana Mokhtar
  • Fatihah Najirah Jumaah
  • Nadhratun Naiim Mobarak
  • Azizan Ahmad

Keywords:

Energy Storage material, polymer electrolyte, poly(vinyl alcohol), Poly(propyl vinyl ether), Williamson ether synthesis reaction

Abstract

Potensi pengeteran poli(vinil alkohol) (PVA) sebagai polimer induk untuk aplikasi elektrolit polimer telah dikaji. Poli(propil vinil eter) (PPVE) telah disintesis melalui proses pengeteran yang juga dikenali sebagai tindak balas sintesis eter Williamson dengan mekanisme penukargantian nukleofilik dwimolekul, SN2 di mana PVA dan pelbagai kepekatan iodopropana telah ditindakbalaskan dengan kemolaran NaOH yang berbeza. Hasil tindak balas, PPVE ditentukan dengan menggunakan spektroskopi inframerah dan spektroskopi resonans magnet nukleus. Didapati struktur kimia PVA mengalami anjakan nombor gelombang bagi kumpulan hidroksil, –OH. Manakala perubahan dari segi keamatan bagi puncak penyerapan kumpulan alkil iaitu –CH3 dan –CH2 serta kumpulan eter, –C–O menunjukkan tindak balas penukargantian SN2 telah berjaya dilakukan. Sifat kekonduksian polimer terubahsuai yang dianalisis menggunakan kaedah spektroskopi impedans elektrokimia memberikan nilai kekonduksian bagi elektrolit polimer PPVE iaitu 2.79 ´ 10-6 S cm-1. Keputusan kajian awal ini menunjuk bahawa polimer terubahsuai perlu melalui langkah pengoptimuman kekonduksian bagi mengenalpasti potensinya sebagai polimer induk dalam sistem elektrolit polimer serta aplikasi bateri ion litium.

References

Fenton, D E., Parker, J.M., & Wright, P.V. Complexes of alkali metal ions with poly (ethylene oxide). Polymer, (1973) 14, 589.

Sownthari, K. & Suthanthiraraj, S.A. Synthesis and characterization of an electrolyte system based on a biodegradable polymer. Express Polymer Letters, (2013) 7(6): 495–504.

Zhang, R., Hashemi, N., Ashuri, M. & Montazami, R. Advanced gel polymer electrolyte for Li-ion polymer batteries. Iowa, United States: Iowa State University, Graduate Theses and Dissertations. (2013)

Jain, N., Singh, V.K. & Chauhan, S. A review on mechanical and water absorption properties of PVA based composites/films. J. Mechanical Behavior Mater, (2018) 26(5–6): 213–222.

Muppalaneni, S. & Omidian, H. PVA in medicine and pharmacy: A perspective. J. Developing Drugs, (2013) 2(3): 1–5.

Saxena, S. Polyvinyl alcohol (PVA). Chemical and Technical Assessment, (2004) 1(3): 3–5.

Bhavani, S., Ravi, M., Pavani, Y., Karthikeya, R. & Rao, V. V. R. Studies on structural, electrical and dielectric properties of nickel ion conducting PVA based polymer electrolyte films. J. Materials Science: Materials in Electronics, (2017) 28(18): 13344–13349.

Aziz, S.B., Woo, T.J., Kadir, M.F.Z. & Ahmed, H. M. 2018. A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices 3(1): 1–17.

Rajendran, S., Sivakumar, M. & Subadevi, R. Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various Li salts. Solid State Ionics, (2004) 167: 335–339.

Zapata, V.H., Castro, W.A., Vargas, R.A. & Mellander, B. More studies on the PVOH–LiH2PO4 polymer system. Electrochem. (2007) 53: 1476–1480.

Ek, G. A study of PVA as a solid polymer electrolyte for lithium ion batteries electrolyte for lithium ion batteries. Uppsala, Sweden: Uppsala University, Theses. (2016)

Abarna, S. & Hirankumar, G. Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity. Ionics, (2017) 23(7): 1733–1743.

Rajeswari, N., Selvasekarapandian, S., Prabu, M., Karthikeyan, S. & Sanjeeviraja, C. Li ion conducting solid polymer blend electrolyte based on bio-degradable polymers. Bulletin of Materials Science, (2013) 36(2): 333–339.

Kadir, M.F.Z., Majid, S.R. & Arof, A.K. Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochimica Acta, (2010) 55(3): 1475–1482.

Genova, K.M.F., Selvasekarapandian, S., Vijaya, N., Sivadevi, S., Premalatha, M. & Karthikeyan, S. Lithium ion-conducting polymer electrolytes based on PVA–PAN doped with Li triflate. Ionics, (2017) 23(10): 2727–2734.

Hema, M., Tamilselvi, P. & Hirankumar, G. Influences of LiCF3SO3 and TiO2 nanofiller on ionic conductivity and mechanical properties of PVA:PVdF blend polymer electrolyte. Ionics (2017) 23(10): 2707–2714.

Mokhtar, M., Majlan, E.H., Talib, M.Z., Ahmad, A., Tasirin, S.M. & Wan Daud, W.R. A short review on alkaline solid polymer electrolyte based on PVA as polymer electrolyte for electrochemical devices applications. Int. J. Appl. Eng. Res, (2016) 11(19): 10009–10015.

Kuo, S. M., Liou, C. C., Chang, S. J. & Wang, Y.-J. Synthesis and characterizations of hydrogel based on PVA-AE and HEMA. J. Polym. Res., (2001) 8(3): 169–174.

Fan, L., Wang, M., Zhang, Z., Qin, G., Hu, X. & Chen, Q. Preparation and characterization of PVA alkaline solid polymer electrolyte with addition of bamboo charcoal. Materials, (2018) 11(5): 679.

Duncan, A.C., Sefton, M.V & Brash, J.L. Preparation and characterization of alkylated PVA hydrogels using alkyl halides. J. Biomaterials Science, (1996) 7(8): 647–659.

Kayser, B., Bauer, W., Dietrich, U., Bacher, A., Schmitz, M., Zeh, H. & Mayer, T. Use of etherified vinyl alcohol polymers as thickeners. United States Patent. (2002). US20020198292A1.

Markova, D., Christova, D. & Velichkova, R. Synthesis of novel poly(vinyl methyl ether) copolymers by alkylation of poly(vinyl acetate) and PVA. Polym. Int., (2003) 52(10): 1600–1604.

Li, L., Shi, H. & Zhang, X. Preparation and characterization of octadecylated PVA polymers. Advanced Materials Research, (2012) 482: 1921–1924.

Gaina, C., Ursache, O., Gaina, V. & Ionita, D. Study on the chemical modification of PVA with 4-maleimidophenyl isocyanate. Polymer-Plastics Technol. Eng., (2012) 51(1): 65–70.

Rani, M.S.A., Rudhziah, S., Ahmad, A. & Mohamed, N.S. Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers, (2014) 6(9): 2371–2385.

Pavia, D.L., Lampman, G.M., & Kriz, G.S. 3rd Edition. Introduction to Spectroscopy: A guide for students of organic chemistry. United States: Brooks/Cole- Thomson Learning (2001)

Wade, L.G. Organic chemistry, 8th Edition, United States: Pearson. (2013).

Khairuddin, Pramono, E., Utomo, S., Wulandari, V., Zahrotul, W. & Clegg, F. FTIR studies on the effect of concentration of polyethylene glycol on polimerization of Shellac. J. Physics: Conference Series (2016) 776(1): 012053.

Groenendaal, L., Zotti, G. & Jonas, F. Optical, conductive and magnetic properties of electrochemically prepared alkylated PEDOT. Synthetic Metals, (2001) 118: 2–6.

Li, Q., Chen, J., Fan, L., Kong, X. & Lu, Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment, (2016) 1(1): 18–42.

Downloads

Additional Files

Published

2019-11-21

Issue

Section

Articles