Cover Image

Sifat Mekanik dan Biodegradasi Biokomposit Poli(Asid Laktik)

Nor Shafiqah Mohd, Noor Afizah Rosli, Wan Hifizi Wan Ishak, Ishak Ahmad

Abstract


Kajian ini dijalankan untuk membandingkan sifat poli(asid laktik) (PLA) dengan penambahan selulosa mikrohablur (MCC) dan selulosa amorfus (AC). AC telah disediakan melalui proses pengisaran selulosa menggunakan bebola pengisar. Perbezaan antara MCC dan AC yang dihasilkan dibuktikan melalui mikroskopi imbasan elektron pancaran medan (FESEM), spektroskopi jelmaan Fourier infra-merah (FTIR) dan pembelauan sinar-X (XRD). Filem biokomposit disediakan dengan mencampurkan PLA dan selulosa dalam pelbagai komposisi pengisi (0-10 %berat) melalui kaedah penuangan larutan. Sifat mekanik biokomposit dikaji melalui ujian regangan. Keputusan yang diperoleh menunjukkan bahawa penambahan pengisi meningkatkan kekuatan regangan yang ketara dengan komposisi optimum pada penambahan 6% dan 8% untuk komposisi diperkuat MCC dan AC masing-masing. Sifat biodegradasi dan permukaan biokomposit PLA dikaji masing-masing melalui ujian penguraian dalam tanah dan mikroskop optik. Pada hari ke-56 sampel ditanam, mikrograf permukaan biokomposit PLA-AC menunjukkan perubahan yang paling ketara berbanding biokomposit PLA-MCC dan PLA. Peningkatan sifat biokomposit dengan penambahan AC adalah disebabkan oleh pembentukan ikatan hidrogen antara selulosa dan PLA yang dibuktikan melalui analisis FTIR. Keseluruhan kajian mendapati sifat mekanik dan biodegradasi bagi biokomposit PLA telah ditingkatkan dengan penambahan pengisi selulosa terutamanya selulosa amorfus ke dalam fasa PLA.


Keywords


amorfus; selulosa mikrohablur; poli(asid laktik); penuangan larutan

Full Text:

PDF

References


Wu, C.S. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: characterization and biodegradability. Polym Degrad & Stab (2009) 94: 1076-1084.

Karamanlioglu, M., & Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad & Stab (2013) 98: 2063–2071.

Teramoto, N., Urata K., Ozawa, K., & Shibata, M. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad & Stab (2004) 86: 401–409.

Rosli, N.A., Ahmad, I., Anuar, F.H., & Abdullah, I. Mechanical and thermal properties of natural rubber-modified poly (lactic acid) compatibilized with telechelic liquid natural rubber. Polym Test (2016) 54: 196-202.

Arjmandi, R., Hassan, A., Haafiz, M.K.M. & Zakaria, Z. Biodegradability and thermal properties of hybrid montmorillonite/microcrystalline cellulose filled polylactic acid composites: Effect of filler ratio. Polym & Polym Compos Shropshire (2016) 24: 741-746.

Zhang, B.X., Azuma, J.I., & Uyama, H. RSC Advances (2015) 5: 2900-2907.

Avolio, R., Bonadies, I., Capitani, D., Errico, M.E., Gentile, G., & Avella, M. Carbo Polym (2012) 87: 265-273.

Cocca, M., Avolio, R., Gentile, G., Di Pace, E., Errico, M.E., & Avella, M. Carbo Polym (2015) 118: 170-182.

Rosli, N.A., Ahmad, I., Anuar, F.H., & Abdullah, I. The contribution of eco-friendly bio-based blends on enhancing the thermal stability and biodegradability of Poly (lactic acid). J Clean Prod (2018) 198: 987-995.

Hideno, A. Comparison of the thermal degradation properties of crystalline and amorphous cellulose, as well as treated lignocellulosic biomass. Bioresour. Technol (2016) 11: 6309-6319.

Erbetta, C.D.C., Alves, R.J., Resende, J.M., Freitas, R.F.S., & de Sousa, R.G. Synthesis and characterization of Poly(D,L-lactide-co-glycolide) copolymer. J Biomat Nanobiotechnol (2012) 3: 208–225.

Bax, B., & Müssig, J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol (2008) 68: 1601–1607.

Yew, G.H., Mohd Yusof, A.M., Mohd Ishak, Z.A., & Ishiaku, U.S. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym Degrad Stab (2005) 90: 488–500.

Shah, B.L., Selke, S.E., Walters, M.B., & Heiden, P.A. Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polym Compos (2008) 29: 655–663.

Garlotta, D. A literature review of poly(lactic acid). J Polym Environ (2001) 9: 63–84.

Wang, H., Sun, X., & Seib, P. Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. J App Polym Sci (2002) 84: 1257–1262.

De, S.K., & White, J.R. Short Fibre-Polymer Composites. England: Woodhead Publishing Limited. (1996).

Mathew, A.P., Oksman K. & Sain, M. Mechanical properties of biodegradable composites from poly(lactic acid) (PLA) and microcrystalline cellulose (MCC). J App Polym Sci (2015) 97: 2014-2025.

Zhang, L., & Liu, H. Biodegradability of regenerated cellulose films in soil. Ind Engin Chem Res (1996) 35: 4682–4685.

Bras, J., Hassan, M.L., Bruzesse, C., Hassan, E.A., El-Wakil, N.A., & Dufresne, A. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crop Prod (2010) 32: 627–633.


Refbacks

  • There are currently no refbacks.