Variasi Suhu dan Kelembapan Subgred di Bawah Simulasi Hujan Buatan

Noor Halizah Abdullah

Abstract


Kajian ini bertujuan untuk menilai kesan variasi keamatan dan tempoh hujan terhadap perubahan suhu serta kelembapan dalam tanah subgred. Faktor ini juga adalah kritikal dalam menentukan kestabilan struktur dan prestasi jangka panjang sistem turapan di kawasan beriklim tropika lembap. Dua jenis tanah subgred berklasifikasi AASHTO A-2-6 diperoleh daripada dua kuari di negeri Perlis, masing-masing mewakili jenis pasir bergradasi rendah (SP) dan pasir bergradasi baik (SW). Selain itu, kajian menggunakan simulator hujan buatan yang dibina khas untuk meniru keadaan hujan sebenar berdasarkan data keamatan hujan ekstrem dari Jabatan Meteorologi Malaysia antara tahun 2013 hingga 2024. Tiga kadar keamatan hujan digunakan (2.14, 2.49 dan 2.74 mm/min) dengan empat tempoh pendedahan berbeza (30, 60, 90 dan 120 minit). Sampel tanah dipadatkan ke dalam acuan Nisbah Galas California (CBR) bersaiz piawai dan dilengkapkan dengan sensor digital pada tiga kedalaman berbeza (atas, tengah, dan bawah) untuk merekod perubahan suhu dan kelembapan secara masa nyata. Selain itu, ujian-ujian geoteknikal seperti ayakan, had Atterberg dan pemadatan Proctor turut dilaksanakan bagi menentukan sifat fizik tanah dan kesesuaiannya sebagai bahan asas jalan. Hasil kajian menunjukkan peningkatan kelembapan yang ketara pada lapisan atas tanah dan penurunan suhu progresif seiring dengan peningkatan keamatan hujan, menandakan kewujudan hubungan langsung antara infiltrasi air dan kehilangan haba tanah. Selain itu juga, tanah dari Kuari 1 menunjukkan peningkatan kandungan kelembapan tertinggi sebanyak 53.8%, manakala Kuari 2 menunjukkan penurunan suhu paling besar iaitu 7.8°C. Perbezaan ini dikaitkan dengan variasi tekstur, pemadatan, dan kebolehtelapan semula jadi tanah. Penemuan ini bukan sahaja menegaskan pentingnya pemilihan bahan subgred yang sesuai mengikut ciri iklim setempat, malah menyediakan asas saintifik untuk pembangunan strategi rekabentuk dan pemodelan prestasi turapan yang lebih berdaya tahan terhadap perubahan iklim.


Keywords


CBR, kelembapan subgred, kestabilan tanah, keamatan hujan, simulasi hujan buatan.

Full Text:

PDF

References


Ahmed, A., Hossain, M. S., Pandey, P., Sapkota, A., & Thian, B. (2019). Deformation modeling of flexible pavement in expansive subgrade in texas. Geosciences, 9(10), 446.

Alex, K. A., James, R. A. G., & Gordon, D. A. (2014). Moisture-induced strength degradation of aggregate-asphalt mastic bonds. Road Materials and Pavement Design, 15, 239–262. doi:10.1080/14680629.2014.927951

Ali, S., Xu, Y., Jia, Q., Ahmad, I., Ma, X., Yan, Z., Cai, T., Ren, X., Zhang, P. & Jia, Z. (2018). Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions. Agricultural Water Management, 204, 198-211.

Alnmr, A., & Ray, R. (2024). Investigating the impact of varying sand content on the physical characteristics of expansive clay soils from Syria. Geotechnical and Geological Engineering, 42(4), 2675-2691.

Bateni, N., Lai, S. H., Putuhena, F., Mah, Y. S., & Mannan, A. (2018). A rainfall simulator used for testing of hydrological performances of micro-detention permeable pavement. International Journal of Engineering & Technology, 7(3.18), 44-48.

Blanquies, J., Scharff, M., & Hallock, B. (2003). The design and construction of a rainfall simulator. International Erosion Control Association (IECA), 34th Annual Conference and Expo: Las Vegas, Nevada, Earth and Soil Sciences, 22.

Bosio, R., Cagninei, A., & Poggi, D. (2023). Large Laboratory Simulator of Natural Rainfall: From Drizzle to Storms. Water, 15(12), 2205.

Brocca, L., Massari, C., Ciabatta, L., Moramarco, T., Penna, D., Zuecco, G., Pianezzola, L., Borga, M., Matgen, P. & Martínez-Fernández, J. (2015). Rainfall estimation from in situ soil moisture observations at several sites in Europe: an evaluation of the SM2RAIN algorithm. Journal of Hydrology and Hydromechanics, (3), 201-209.

Castro, G. M., Park, J., & Santamarina, J. C. (2023). Revised soil classification system: implementation and engineering implications. Journal of Geotechnical and Geoenvironmental Engineering, 149(11), 04023109.

Dafalla, M., Shaker, A., Elkady, T., Almajed, A., & Al-Shamrani, M. (2020). Shear strength characteristics of a sand clay liner. Scientific reports, 10(1), 18226.

Donald, W. N., Fang, X., Zech, W., & Manning, C. (2022). Evaluation of ALDOT Erosion Control Practices Using Rainfall Simulation (No. FHWA/ALDOT 930-962). Auburn University. Highway Research Center.

Fernández-Raga, M., Rodríguez, I., Caldevilla, P., Búrdalo, G., Ortiz, A., & Martínez-García, R. (2022). Optimization of a laboratory rainfall simulator to be representative of natural rainfall. Water, 14(23), 3831.

Gaspard, K., Zhang, Z., Gautreau, G., Hanifa, K., Zapata, C. E., & Abufarsakh, M. (2019). Modeling the Resilient Modulus Variation of In Situ Soils due to Seasonal Moisture Content Variations. Advances in Civil Engineering, 2019.

Gaudiosi, I., Romagnoli, G., Albarello, D., Fortunato, C., Imprescia, P., Stigliano, F., & Moscatelli, M. (2023). Shear modulus reduction and damping ratios curves joined with engineering geological units in Italy. Scientific Data, 10(1), 625.

Han, C. P., & Cheng, P. F. (2015). Micropore variation and particle fractal representation of lime stabilised subgrade soil under freeze-thaw cycles. Road Materials and Pavement Design, 16, 19–30. doi:10.1080/14680629.2014.956139

Hou, L., Wang, Y., Shen, F., Lei, M., Wang, X., Zhao, X., Gao, S. & Alhaj, A. (2020). Study on Variation of Surface Runoff and Soil Moisture Content in the Subgrade of Permeable Pavement Structure. Advances in Civil Engineering, 2020.

Jabatan Meteorologi Malaysia. (2024). Maklumat Iklim. Retrieved from https://www.met.gov.my/iklim/maklumat-iklim/ on 5 Jan 2020

Jin, K., Cornelis, W. M., Gabriels, D., Schiettecatte, W., De Neve, S., Lu, J., Buysse, T., Wu, H., Cai, D., Jin, J. & Harmann, R. (2008). Soil management effects on runoff and soil loss from field rainfall simulation. Catena, 75(2), 191-199.

Lekmang, I. C., Daku, S. S., Yenne, E. Y., Wazon, H. N., & Goyit, M. P. (2016). Geotechnical investigations for infrastructural development: A case study of Daki Biyu District, Federal Capital Territory, Abuja, Central Nigeria.

Liu, M., Liu, J., Bhat, S., Gao, Y., & Lin, C. (2025). Model tests on wicking geosynthetic composite reinforced bases over weak subgrade. Geotextiles and Geomembranes, 53(4), 938-949.

Liu, W., Feng, Q., Deo, R. C., Yao, L., & Wei, W. (2020). Experimental Study on the rainfall-runoff responses of typical urban surfaces and two green infrastructures using scale-based models. Environmental management, 66, 683-693.

Liu, Z. (2015). Influence of rainfall characteristics on the infiltration moisture field of highway subgrades. Road Materials and Pavement Design, 16(3), 635-652.

Maggioni, V., Reichle, R. H., & Anagnostou, E. N. (2012). The impact of rainfall error characterization on the estimation of soil moisture fields in a land data assimilation system. Journal of Hydrometeorology, 13(3), 1107-1118.

Meena, R. K., Sen, S., Nanda, A., Dass, B., & Mishra, A. (2022). A contribution to rainfall simulator design–a concept of moving storm automation. Hydrology and Earth System Sciences, 26(16), 4379-4390.

Mendes, T. A., Pereira, S. A. D. S., Rebolledo, J. F. R., Gitirana Jr, G. D. F. N., Melo, M. T. D. S., & Luz, M. P. D. (2021). Development of a rainfall and runoff simulator for performing hydrological and geotechnical tests. Sustainability, 13(6), 3060.

Mhaske, S. N., Pathak, K., & Basak, A. (2019). A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena, 172, 408-420.

Najjar, S. S., Yaghi, K., Adwan, M., & Jaoude, A. A. R. (2015). Drained shear strength of compacted sand with clayey fines. International Journal of Geotechnical Engineering, 9(5), 513-520.

Nazri, F. A., Zamani, N. S. M., & Singh, M. J. (2018). Analisis ramalan pelemahan hujan semenanjung Malaysia menggunakan peta rekaan berkontur. Jurnal Kejuruteraan, 30(1), 77-82.

Ngezahayo, E., Burrow, M., & Ghataora, G. (2021). Calibration of the simple rainfall simulator for investigating soil erodibility in unpaved roads. International Journal of Civil Infrastructure, 4, 144-156.

Nguyen, Q., Fredlund, D. G., Samarasekera, L., & Marjerison, B. L. (2010). Seasonal pattern of matric suctions in highway subgrades. Canadian Geotechnical Journal, 47, 267–280. doi:10.1139/T09-099

Peng, J., Zhang, J., Li, J., Yao, Y., & Zhang, A. (2020). Modeling humidity and stress-dependent subgrade soils in flexible pavements. Computers and Geotechnics, 120, 103413.

Radzi, S. M., Ghani, A. N. A., Ismail, M. S. N., Hamid, A. H. A., & Ahmad, K. (2017). A study on the use of polyurethane for road flood damage control. GEOMATE Journal, 12(32), 82-87.

Robinson, W. J., Ordaz, M., & Tingle, J. S. (2025). Development of a Rainfall Simulator to Evaluate Moisture Sensitivity of Static Loading in Airfield Pavements. Transportation Research Record, 03611981251333712.

Salem, L. A., Shaban, A. M., & Almuhanna, R. R. (2024, January). Predicting subgrade reaction modulus of sand soils using dynamic cone penetrometer. In AIP Conference Proceedings (Vol. 2864, No. 1, p. 060007). AIP Publishing LLC.

Senturk, M. A., Ordu, E., & Tan, R. K. (2025). Machine learning-based prediction of soil compaction parameters. Environmental Earth Sciences, 84(13), 349.

Stevens, J. (1982). Unified soil classification system. Civil Engineering—ASCE, 52(12), 61-62.

Yang, Y., Li, S., Li, C., Wu, L., Yang, L., Zhang, P., & Huang, T. (2020). Comprehensive laboratory evaluations and a proposed mix design procedure for cement-stabilized cohesive and granular soils. Frontiers in Materials, 7, 239.

Yoshioka, M., Takakura, S., Ishizawa, T., & Sakai, N. (2015). Temporal changes of soil temperature with soil water content in an embankment slope during controlled artificial rainfall experiments. Journal of Applied Geophysics, 114, 134-145.

Zhao, F., Zhang, S. H., Chen, J. G., Kong, G., & Gong, Y. (2011). Research on rainwater infiltration collection and runoff reduction technology in permeable pavement. Water Supply and Drainage, 37(S1), S1254-S1258.

Zhou, L. J. (2012). Subgrade stability analysis with rainfall infiltration. In Applied Mechanics and Materials (Vol. 204, pp. 284-288). Trans Tech Publications Ltd.

Zhou, Y. (2023). Soil Mechanics: Description & Classification. CED Engineering. Retrieved from https://www.cedengineering.com/userfiles/G04-002%20-%20Soil%20Mechanics%20-%20Description%20&%20Classification%20-%20US.pdf on 5 Jan 2025.

Zhou, Z., Wang, Y., Li, R., Qi, L., Zhao, Y., Xu, Y., Tong, Y. & Huang, J. (2023). The deterioration and restoration of dried soil layers: New evidence from a precipitation manipulation experiment in an artificial forest. Journal of Hydrology, 625, 130087.

Zhu, H., Yu, M., Zhu, J., Lu, H., & Cao, R. (2019). Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. International journal of transportation science and technology, 8(4), 373-382.

Živanović, N., Rončević, V., Spasić, M., Ćorluka, S., & Polovina, S. (2022). Construction and calibration of a portable rain simulator designed for the in situ research of soil resistance to erosion. Soil and Water Research, 17(3), 158-169.


Refbacks

  • There are currently no refbacks.